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ABSTRACT

An analysis is made of wide-deviation frequency-modulation systems
having low nominal-carrier-frequency to information-bandwidth ratios.
Since limiting plays an important role in such systems, the effects of
hard limiting of many signals in random noise are analyzed. Expressions
are given for the output signal-to-signal ratios (sSR), the output signal-
to-noise ratios (SNR), and the power in any crossproduct. The effect of
the power in each output component as a function of the input SNR is
investigated. It is found that for all values of input SNR's greater
than 10, the strengths of the various output components are relatively
constant. For the case of more than two input signals, a weak signal-
boosting effect manifests itself when the input SNR's are less than 1
and the input SSR's are greater than 1/10. The signal-suppression effect
and the signal-to-signal power sharing, together with their dependence on
input signal noise, are presented for various cases.

Expressions are presented for the autocorrelation function and the
spectral power density of hard-limited FM pulse trains, which allow the
computation of the intermodulation products in the information bandwidth
or in any other frequency interval. The effect of the nominal-carrier
frequency on the interference ratio is exhibited graphically for various
constant deviations.

A‘partial interaction of the positive and negative spectra of the
modulated wave causes extraneous outputs. For all such spurious components
to be filterable, a relation is derived between the carrier frequency, the
maximum frequency of information, and the spectral bandwidth of the modu-
lated wave. The analysis results in systems which have better performance

capabilities.
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PRINCIPAL SYMBOLS

k/2

b = (N/2) h [see Eq. (2.29)]
k,mlmz..mp k,mlmz..mf

C_fc J{cos Ww(t)) » B(f + fc)

c+fc 3{cos Y(t)] * d(f - fc)

1
[é+f ] C.e 3 [1 + sgn (f))
cJ+ c
c C .1 [1 - sgn (f)]
+f +f 2
cd- c
E(x) complete elliptic integral of the second kind
n/2
= E (x, ﬂ) = f [1- x2 sinch]l/2 do
2
0
fc nominal-carrier frequency
fm modulating frequency
fmm maximum frequency present in the information
{6} Fourier transform of (0]
k
g(t) » g(t) k self-convolutions of g(t)
Im(x) modified Bessel function of the first kind of order m

(imaginary argument)

IM(p,n) intermodulation product at frequency (2pfc + nfm)

IR(p,n) interference ratio at frequency (2pfC + nfm)

Jm(x) Bessel function of the first kind of order m (real
argument )

k percent deviation
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Mx(wt’wt') two-dimensional joint characteristic function
p(y) probability distribution function of (y)
Rx[tl,tz] E[x(tl) . x(tz)] = autocorrelation function of the real
random process x(t)
Rx[o.'r] Rx('r)
s(f) spectral power density = Fourier transform of R(71)
=f R(1) e T gy, w = 2uf
-
1
s, (¢) S(1) + L 1+ sem (D)1
1
s_(f) s(f) + 5 (1 - sen (£)]
" (si i,
S, ¢ (sin ¥(t)]) x d(f fc)
c
x(t) Hilbert transform of x(t) = Cauchy's principal value of
lf x(s) ds
1 _“)t -8
VANSWAN § k fc
i i = 4 — = |+ — & —
B modulation index * 3 100 I
m m
5(t) Dirac delta function = unit impulse at t = 0
1 if m=20
Gm Neumann numbers =
2 if m>20
gT(t) random process defined by [U(t) - Y (t - T)]

normalized autocorrelation function

©
—
—
=
o
I

]

1\ . ,
f o(f) e ar, o = 2nf

bl 8 9]
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&9 :
o(f) Fourier transform of p(7) =.I- o(T) e T o

®y(f) characteristic function which is equal to
i g
Al
E[e™Y) =./- e’ p(y) dy, w = 2nf
-0
w(t) information in the case of phase modulation
&(t) information in the case of frequency modulation
* convolution; that is,

g(t) = £(t) =foo g(a) £(t - @) da = fw f(a) g(t - a) do

-0

0 for £ <0
sgn (f) % for f =

1 for £ >0
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I. INTRODUCTION

The purpose of this research is to analyze some of the problems
peculiar to wide-deviation frequency-modulation systems having low nominal-
carrier frequency to information-bandwidth ratios. Some form of frequency
modulation is employed in many tape-recorder systems due to the fact that
the effect of random envelope variations occurring during playback can be
eliminated at the receiver by hard limiting prior to demodulation. A
typical electromagnetic recording channel has a bandwidth from an upper
limit of a few megacycles down to a lower limit of a few hundred cycles.
1f, for example, it is desired to record information down to dc, some form
of modulation must be used before the information can be so recorded. The
parameters of a typical channel are a low nominal-carrier frequency and
the widest possible deviation ratio. The high deviation is needed to
obtain an acceptable signal-to-noise ratio (SNR). Since the channel band-
width is fixed, most of the modulation schemes result in reduction of the
information bandwidth that can be recorded.

In order to maximize the information bandwidth, a vestigial technique
is sometimes employed. At other times conventional frequency modulation
is used. In either case, spurious outputs arise because the bandwidth of
the channel is not wide enough to record the entire portion of the frequency-
modulated spectrum that carries significant amounts of energy. The ultimate
performance of such a system is often limited by these spurious outputs
rather than by the SNR. In other instances, many signals are multiplexed
on the same channel. Then it is of importance to be able to compute the
strengths of various crossproducts and the signal-to-noise ratious of each

signal.

A. BACKGROUND

The effects of hard limiting on signals and noise have been studied by
various investigators from time to time. Using the techniques developed
by Bennett and Rice [Ref. 1] and by Middleton [Refs. 2,3], Davenport
studied the case of a single sine wave and additive gaussian noise when

h
passed through a vt law device and gave explicit results for the changes
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in signal-to-noise ratio produced by an ideal limiter [Ref. 4]. Later
Granlund [Ref. 5] and then Baghdady [Ref. 6] studied the problem of hard
limiting of two sine waves without noise and their results included some
expressions for the evaluation of the strengths of output signals and
intermodulation products. Davenport and Root [Ref. 7] studied the prob-
lem of bandpass limiting of two sine waves in the presence of additive
gaussian noise. Their investigations were reinforced recently by Jones
[Ref. 8], who studied the problem in great detail in order to examine the

effects of limiters in long pulse radars and other cases where substantial

L e B o e o EEE . - == -~ . e o ..

pulse overlaps occurred. Jones studied the case of two signals in noise

and gave relations among the output signals, noise, and intermodulation
products due to bandpass hard limiting in that case only.

The present study extends the analysis to the case of bandpass hard
limiting of p signals in additive gaussian noise. It is, in short, a
generalization of the problem investigated by Jones, using the nonlinear
transform technique which is convenient and mathematically rigorous,

The results are shown to agree with those of (1) Jones, when p = 2;

v
I "I . . e . B

(2) Granlund and Baghdady, when p = 2 and when the input signal-to-noise

ratio is made arbitrarily large (no-noise case); and (3) Davenport, when

p =1.

B. OUTLINE OF PRESENTATION

Chapter II presents an analysis of the effect of hard limiting on

p signals in noise. Expressions are given for the spectral power density

- - e e = -

and the autocorrelation of the limited output, the output SNR's, the out-
put signal-to-signal ratios (SSR), the signal-suppression effect, and the
intensity of any crossproduct. Some curves and numerical results are also
presented, and some asymptotic values are derived.

Chapter III presents a derivation of expressions giving the output

speocrum of wideband frequency-modulated pulse trains generated from

1-

Prior to publication of this study, P. D. Shaft, who has also investigated
the problem, presented a paper at the IEEE Convention in New York on 24
March 1965 [Ref. 9]. Mr. Shaft was formerly with Western Development

Laboratories, Philco Corporation, and is now with the Stanford Research
Institute, Menlo Park, California.
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hard-1limited frequency-modulated signals. Expressions are given for the
spurious outputs in the demodulated signal. A system of indexing the
spurious components is developed, and curves are given which show the
dependence of spurious outputs on carrier frequency, deviation, and the
information frequency. Interference ratios are defined, *hen computed
and tabulated together with experimentally measured values.

Chapter IV presents an analysis of the "aliasing" phenomenon which is
due to the interaction of the positive and the negative spectra when the
frequency of the nominal frequency-modulated carrier has a value lower then
half the spectral bandwidth of the modulated wave. Expressions arc given
that relate the nominal-carrier frequency to the maximum frequency of
information. Analysis and block diagrams of proposed systems are pre-

sented which are improvements over existing systems.

-3 - SEL-65-056
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II1. HARD LIMITING OF p SIGNALS IN RANDOM NOISE

A. FORMULATION OF THE PROBLEM

The effects of hard limiting of p signals in random noise are ana-
lyzed, assuming the input conditions described in the following five sub-
sections. The system studied is shown in the block diagram of Fig. 1, in
which it is assumed that the input signals and noise are bandlimited by

bandpass filtering centered around fc

5 (1)
' BANDLIMITED BY IDEAL LIMITER BANDPASS FILTER

LPL BANDPASS FILTERING
CENTER |
. FREQUENCY f,
L] X e e
x(1) ) 2()
-1
o ¢
S .
miih

FIG. 1. BLOCK DIAGRAM OF THE RECEIVER ANALYZED.

1. Limiter Input Random Process |

The limiter input random process, defined as x(t), consists of
p unrelated sine waves and additive gaussian noise. In particular, for |

every i in the (1,p) interval,
si(t) = ,/2si cos (wit + ¢i) (2.1)

|
where the ®i are statistically independent random variables, each having ‘
a uniform distribution on the interval (0,2x). |

!

The input x(t) is therefore

x(t) = sl(t) + sz(t) oo+ sp(t) + n(t)

P
25 ,/ZSi cos (wit + oi) + n(t) (2.2)

i=1

SEL-65-056 -4 - 5
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2. Input Noise

The input noise n(t) is a sample function of zero-mean, station-
ary, narrowband gaussian noise. It is assumed symmetrical around fc

since the signals and noise are bandpass filtered prior to limiting.

3. Autocorrelation Function of the Input Noise

The noise n(t) is a sample function of a stationary random
process. The covariance function of n(t) can be readily written as

[Davenport and Root, Ref. 7, p. 169]

R(t) = Rc(t) cos wct - Rcs(t) sin u)ct

]1/2 1 Rog(t)

2 2 - cs
= [Rc(t) + RT (t) cos ¢, t + tan .?Ezzj— (2.3)

Cs

Since f_ 1is chosen such that S(f) is symmetric about it,

S+(f + fc) = S+(-f + fc) (2.4)
and
s (f - fc) =8 (-f - £ ) (2.5)
which gives
Sc(f) = 28+(f + fc)
(2.6)
Scs(f) =0
This equation implies that
R(t) = 2Rc(t) cos .t (2.7)
-5 - SEL-65-056
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Adopting the usual normalization by defining p(T) such that it contains

unit power, one can write the covariance function of the input noise as

Rn(T) = Np(1) cos w, T (2.8)

4. Limiter Transfer Function

The limiter output y(t) can be written in terms of its input as
+1 for x(t) >0
y(t) = g[x(t)] =¢ 0 for x(t) =0 (2.9)

-1 for x(t)<oO

5. Narrowband Assumption

The narrowband assumption implies that the difference between any
pair [wi,wj] chosen from the set {wl,wz,...,wp,wc} is negligible

magnitudewise when compared to any member in the set; that is,

for any 1i,j € (k) (2.10)

lu& - uj| << oy

where {k} = {1,2,...,p,c). This assumption guarantees that the inter-
ference between adjacent spectral zones at the output of the limiter will
be negligible. Hence the first spectral zone can be obtained by suitable

bandpass filtering around fc.

B. LIMITER OUTPUT

1. Derivation of Autocorrelation Function

The signal~to-noise ratio among the output components of the
limiter output y(t) can be obtained from the autocorrelation function

of the limiter output which is defined as

R (%) S E(elx(t)] glx(t + 1)]) (2.11)

SEL-65-056 -6 -
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or

R (t,t) = E (elx(t)] elx(t')]) (2.12)

A
where t' =t + T. Using the techniques suggested by Bennett and Rice
[Ref. 1], Middleton [Ref. 2], and Davenport and Root [Ref. 7], one can

represent the transfer function of the nonlinear device by

1 XW 1 XwW
g(x) = ore f f+(w) e dw + o] f £ (w) e dw (2.13)
C C
+ -
where
C+ = the contour w = u' + jv, u' > u,
C_ = the contour w = u" + jv, u" < ug
oo 0.0} 1
f+(w) =f g+(x) e VX dx = J‘ 1 e Fax ==
0 0
B -wx ° —wx! 1
£ (w) = f g (x) e dx =f e dx' ==
i) (0]
Hence

+

g(x) = 1 f exw_d_y 1 f exwd_\_v
2n) C w 213 C w

+ -

The contours C+ and C_ are shown in Fig. 2.
1t should be noted that both contours include the entire w = jv

axis except the origin, which is excluded because of the presence of a

-7 - SEL-65-056
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w PLANE w PLANE

Ny ] ;
jIE Y

C+CONTOUR C_CONTOUR

FIG. 2. CONTOURS OF INTEGRATION.
pole at that point. The integrands are identical and therefore, for
compactness, the equation of g(x) is represented by a single integral

over the contour C. For final evaluation, one can simply evaluate over

C+ and C_ separately and add.
1
g(x) = =— f WX ¥ (2.14)
21J C

Therefore,

1 dwt dwt,
R (t,t') = .f j. E_{exp [w x(t) + w_,x(t')])
y (22)2 Jo Y Jo Ve X t t
(2.15)
By definition Ex{exp [wtx(t) + wt,x(t')]] is the two-dimensional joint
characteristic function and can be denoted by Mx(wt’wt')' Hence

o 1 dwt dwt,
Ry(t,t ) —"(—2—“;—)—2-];7—]; w Mx(Wt,Wt,) (2.16)

Since the input process has an independent nature, manipulation of Mx
is particularly convenient. The input x(t) is the sum of the zero-mean,

statistically independent random processes,

SEL-65~-056 - 8 -
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p

x(t) = n(t) + 2{ si(t) (2.17)
i=1
and therefore
p+1
M(wowe ) = oM (uw)
i=} 1
p+1l
= J!; Exi {exp [wtxi(t) + wt,xi(t')]] (2.18)

It can be shown that the joint characteristic function for stationary

gaussian noise is [Ref. 7, Eq. (13.43), p. 289; Parzen, Ref. 10]
<o 1 (42 4 42)
Mn(wt’wt') = exp [2 wy o W) ok Rn(T) wtwt,] (2.19)
Each of the sine-wave signals
s, = ,/281 cos (wit + ¢i)
has a joint characteristic function

Msi(wt’wt') = E [exp (wt 25, cos & + wt,,/ZSi cos Gt,)] (2.20a)
The exponentials are expanded using the Jacobi-Anger formula [Watson,

Ref. 11; also see Eqs. (B.10a) - (B.10d) on p. 115, this report] to give

o] o8]

Msi(wt,wt,) = ZS € c Im(wt,/ZSi) In(wt,,/zsi) E(cos mg, cos net,)
m=0 n=0

(2.20b)
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The expectation can be simplified to

— 1
E(cos me, cos not,) = E[cos m(wit + @i) cos n(&it + @i)]

1
= E{z cos [(m + n)wit + T 4 me, + nwi]}

+ E {% cos [(m - n)wit -, T+ (m - n)oii}

0 when n #m
1
3 ©os (mniT) when m = n (2.21)

The above simplification gives

[ee]
—_ 1
Msi(wt,wt,) = z €n Im(wt ‘/281) Im(wt ,/2si) cos (nwi’r) (2.22)
m=
where
Im(x) = [modified Bessel function of
the first kind of order m]
1 if m=20
¢ = Neumann numbers =

From Eq. (2.19)

SEL~65~056 - 10 -
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Therefore,

k=0
(2.23)
which gives
dw dw
1 t t!
Ry(trt') =_——'2-f—w-[ W Mx(wt'wt')
(273)° ¢ "t “Jc "t
dw dw p
1 tf t!
= o M (W W |)
(2”)2 c v c Vi i];[1 s, t't
oo}
: N 2 v2y S k
exp (2 wt) °xp (2 Vi r (R (T) wow ]
i k=0
Simplifying,
1 o RE(T) k-1
Ry(t,t') = 3 Z = I Wi exp (-5 wt> dw,
(2n3) c
k=0
p
k
. H M (wt,wt,) j W, exp <§ W ,) dw, ,
i=1 i C
(2.24)
- 11 - SEL-65-056
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Define:

A1l k-1 N 2
Peom ..m = 23 _£ v I (wy2s )| exp (5 w ) dw  (2.25)

i=1 i
With this definition, Eq. (2.24) can be rewritten as

Ry(t,t') =R (T)

i
18
(AR
Mg

=]
w/\
1 Qa
=3
_WM
=
=]
1o
m
(]
[e]
®
_5
[
-
a3

00 o 00 Rﬁ(’f) \ p
Ry(T) = Z Z z e hk,ml..m ﬂ emi cosm, w, T (2.26)
k=0 m_ =0 m = P \i=1
1 p

A product of p cosines can be expressed as a sum of cosines

WA RN Y K S IR R LB e e e g i e RS B YUY R RN By Sy W e R Ao~ T W

P
T . _ 1
.l'l (cos mi”i) = e [cos (ml(,1 * M8, + + mpr.p)
i=
+ cos (ml(-1 AL SIPUE P mpep) + cos (ml(k1 MEPCPL R mp-lep-l + mpgp)
\ i . p-1
+ cos (m1 P My b mp-l( pe1 mp{p) L. 2 terms]
A1 by
= cos (m .+ .., + m ¢
2r1[ (myfy p'p) ! (2.27) E
-
SEL-65-056 - 12 - >
al
3
=
Ly

0 0.8 .0 b VS E S b R e IV AT M I A L R L B A AT B BT I R ICAE I N MDA G ST T ML G I NS 0 0 5" §Y ,'.'!N“i



where the final bracketed term represents the sum of 2p—1 cosines by

definition.

a. Simplification of the Contour Integral hk i m
,m_ ..

1 'p
In evaluating the contour integral hk m m the first
My My
question to resolve concerns the pole at the origin.
™~ i
1 ; N 2
_ k-1 . N )
hk,m n T T f w H I (w,/ZSi) exp (2 wo) dw
1 p C i=1 i

+

[ p
1 k-1 H (g 2)
t 33 J‘ w I (w,/ZSi) exp (5 W) dw
C_ Li=1 i

(2.28)

Note that for w - O, Ip(w) - wp/zpp! (see Watson, Ref. 11), the above

integrand becomes

(k+Zmi-1)
Y
constant

as w~-0

The integrand is well behaved along the whole of the w = jv
axis except possibly at the origin. The pole at the origin will also
vanish if either k or any one of the mi is greater than or equal to
1. If the dc term is eliminated from the covariance function, no pole
will occur at the origin. All the limiter inputs have zero mean, making
the integrand analytic along the entire w = jv axis. The two contour

integrals can now be reduced to a single integral. Hence,

p
JO()
1 k=1 N 2
hk,m T —-—-2]0, 2 f w H Im‘ (w,/ZSi) exp (§ w ) dw

1 "'p - Jo i=1 1

- 13 ~ SEL-65-056
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Converting to a real integral by using the relations I (jz) = j" g (z)
m m

and w = jv yields

(e8] p ‘
-1 k-1 k-1 N 2 _Zmi |
hk,m..m T onj J v exp <’§V>J H J (v,/ZSi)jdv |
1 o} -0 i=1 i |
(k+4Zm -1) po0 p
1. i k-1 N 2
=< f v exp (--Z-V)H Jm.(v,/zsi) dv
-(CK) i:l 1
(k+Zm -1) 00 P |
_ 1. i k-1 N 2) |
x J J(; v exp (- 7V H Jm.(v,/zsi) dv |
i=1 1 1
|
|
0 P ‘
_ k-1 N 2 |
f v exp (— 7V ) H Jm.(v,/zsi) dv 4‘
- i=1 i |
|

1 (k+zm -1) L 1)(k+£mi)

. = ]
1
|

w0 _ P \
fo v exp (- 3 v) H Jm.(v‘/zsi) dv
i=]1 1 |
i
|
Now :
J
~
2 for k + Zm, odd
1
(k+Zm, )

1 - (-1) 1 =< 4
i
|

0 for Kk + Zmi even ,‘
|
- i
|
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and hence

b. Computation of the Integral b
k,ml. .mp

It is convenient to define a quantity
b 2 (g) h (2.30)

In the autocorrelation function, this quantity appears with an index of

2, hence the sign of the term will be dropped and the quantity redefined

as
2 /2 e P
2 (5) j(; v e (-3 ) 1]11 Jmi(v‘/ﬁi) dv it <k ¥ Zm1> odd
bk,ml..mp : (2.31)
0 otherwise

It has been found preferable to adopt the following two forms:

1. Strong Noise Case. N 1is greater than Si for all i ¢ (l,p). By

an appropriate change in variable and subsequent simplification,

1 .fu‘xk—l exp 53 [ ! d if {(k .ﬂm dd
= - ! — x| dx i + 2 . o
nzk 1 o 4 ie1 m, N i

% m T (2.32)

0 otherwise

- 15 - SEL-65-056
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2. Strong Signal Case. Let 8, >8, for ice (2,p) and let S, > N.

Then by another appropriate change in variable,

4Sl

s, 1/2
Jmi = y| dy (2.33)

Defining 7, = ,/Si/S , then by hypothesis

1 1 N\¥/2 = N 2
b e y exp |- o= ¥
.. b

A

7, =1 and 7, 51 for i#1
hence

| Jmi()«iy) dy if k + zmi = odd

(2.34)

0 otherwise

It is easy to express these forms in terms of an infinite
series involving confluent, gaussian, or generalized hypergeometric func-
tions. But it is better to deal directly with Eqs. (2.31) - (2.33) when
deriving asymptotic properties and limiting values. Due care must be
given to convergence problems.

For numerical results, it was found to be most convenient to
carry out numerical integration on the computer directly rather than

1.

resorting to the evaluation by summation of hypergeometric series.

TSee Appendix A and Refs. 12-18 for additional formulas and tables per-
taining to integrals involving Bessel functions.
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¢c. Wideband and Narrowband Considerations

Based on the simplification and computational procedures
discussed in Secs, la and 1b above, the following expressions that are

valid for any bandwidth are obtained:

0 00 20 Rz('f) ) p
Ry(’r) = z z z o by n P €, €os mw T
k=0 m_ = m_=0 1 Pia1
1 p

(2.35a)

where Rn(T) is the autocorrelation function of the input noise.
Using the expressions and notation of Eq. (2.27), one can

rewrite the above equation as

[6¢] o0 o0 Rk(T) €m PR €m
n 2 1 p
Ry(T) = tee kT Pkomo..m -1
! my - 9
k=0 m_ =0 m =0
1 p
. + +
cos [(mfbl N mpwp)T] (2.35b)

The Fourier transform of Eq. (2.35b) gives the power spectral

density of the limiter output,

00 w 0 em ...€m
k
s =5 S Y T s b )
y k! 2P k,ml..mp n n
k=0 m_ =0 m = *
1 p
- + + +
x (B[f (mlfl ... F mpfp)] + B[f + (mlfl L mpfp)]}

(2.36)

k
where [S (£) * Sn(f)] implies k convolutions of Sn(f) with itself

n
and Sn(f) is the power spectral density of the input noise.

- 17 - SEL-65-056
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With the following points in mind, it is only a matter of
straightforward computation to obtain numerical results for specific

problems:

1. As k increases, the k self-convolutions of Sn(f) may
rapidly become gaussian.

2. Sn(f) may be a reproducing density, e.g., exponential, gaussian,
etc.

3. Convolutions with delta functions are particularly easy.

4. 1In practice, one is usually intercsted in a certain spectral zone
and in some cases in a few terms, which simplifies matters.

5. Use should be made of the fact that hkrml-'mp exists only for
the terms where k + Zmi is odd and vanishes for the rest. Hence
the terms to be computed are halved at the outset.

6. The value of hk,ml..mp may be so small as to be insignificant.

Up to this point no use has been made of the narrowband
restriction. The expression for the autocorrelation of the limiter out-
put is valid for any bandwidth.

Assuming narrowband restriction and normalizing,

Rn(T) = Np(T1) and Sn(f) = No(f)

where

O(f) = f p(’f) e-lZ:ﬂf'E dv
o0

J o(f) df =1
-0

so that o(f) is a probability distribution function, The input noise

p(0)

has a density which is even about f

b

Rn(m) = Np(1) cos Wb
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Substituting in Eq. (2.35b),

R [S¥) X0 Kk Cm €m
_ NT 2 K k 1 P
R (%) = > o> > X e () o8l =y
k=0 m, =0 m =0 P
1 P
* cos [(mful ...t mﬁbp)T] (2.37)

To simplify the above, use is made of the following expression [Ref. 7,

page 298]:

f (k-1)/2
1 .
1 25 oo 1)T i oo (k- 21) w,T for k odd
i=0

cos® (o, 7) J

(k-2)/2
k! 1 1
— ————————— - i POl ¥
T E TEEVOEY cos (k- 2i) W, T+ (k ')2 for k even
2 . 2{—= °
i=0 2
.

(2.38)

It is readily seen that the output power spectrum is centered at the fol-

lowing carriers:

(k - 2i) Wy My oL F mw (2.39)
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Further

X% X K Fm P &m (k-l)/2
2 2 o2 ‘ Y
,ml. m 2p-l P m
k=l m =0 m_=0 P 1=0
k odd P

- r
cos {{(k - 2i)u, 2 mo) e + mpup]”]
x " x ‘m o S (k-2)/2
+ 2: 2: . E:bz S S YO z: —_1
k,m ..m oP-1 (k-1)! 1!
k=0 =0 =0 P i=0
( a k even
R (1) =
. )
. 1
cos ([(k-21)uctmlm1t...tmu 1T} + 5

* cos L(mlul o mﬁpp)rj if <L + :5m1> is odd

2. Spectral Analysis and Filtering

Since the autocorrelation of the output exists for only the odd
integral values of k + Zmi, the spectrum of the limiter output consists
of components situated in zones around the odd harmonics of the input
frequencies. As stated before, the narrowband restriction virtually

eliminates interference of these output zones and hence any one zone can

be selected by appropriately bandpass filtering the output,
It is now assumed that the zone around the first harmonic band
around f  is filtered. The filtered output process is denoted by z(t).
The general expressions for RZ(L) and Sz(f) are cumbersome.
The analysis is not difficult but it is lengthy and requires careful manip-
ulations, It is better to think that the sums of cosines constituting
the term cosk(uCT) are the carriers which are shifted up or down by the
term (mlwl S & mpup). To get the first-harmonic band, the following

conditions must hold:

;
|
3

1
L
IO PO Y T i T AN AT i Tl o A al e T w A T IO @ (M Ty ™y W W (O N g W AT AW o (T o Yo Bals Sy n®a®aleTar, '.'.'.‘-J.

SEL-65-056 - 20 -



k + Egmi = odd integer = O

(2.40)
(k - 2i) + m * + L +1
which implies
0,2,4,...,k+1 for k odd
+ =
m1 * * mp
1,3,5,...,k+1 for k even

Now for each of the values of mi which satisfy the above equation, a
series of terms is written. The final total of all such terms in the
first-harmonic band may in some cases be expressed in a single compact
form. This is possible for small values of p, such as 0, 1, or 2.
For instance, this procedure, when applied to the case p =

2,
gives the following result which is due to Jones [Ref. 8, Eq. (13), p.

35]:
2
® % % 2b ,
k|4 [4-|1+2]]
R(T) = ZE 25 22 k+ 1] k- 1] ° ()
iz=-—0 f=-w k:']_' , Ill+2 2 ! > !
| * cos [|i|u>C - i+ 1|w2 + E(wz - wl)]T
where
o (N2
bk mom. (5) hk m,m
B 172

Similar expressions can be derived easily for p =0 or 1.
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It has been assumed that the input process is wide-sense station-

ary. If it is not weakly stationary, the only change that would result

).

3. Output Signal-to-Noise Terms

would be to replace T by (tl,t2

a. Output Signal Power

Fortunately it is not necessary to calculate the series for
RZ(T) to find the output signal-to-noise terms. The expression for the
autocorrelation of the output consists of line spectra and continuous
noise components. The periodic part of the output is primarily the result
of the interaction of the input signals with themselves. The remaining
terms correspond to the random variations of the output, i.e., the output
noise. These terms can be split into two sets, one corresponding to the
interaction of the input noise with itself and the other corresponding to
input signals interacting with the input noise. Using Davenport and

Root's notation [Ref. 7], RZ(T) can be split into subsets:

p p-1
R (1) =R (t) + R R (t) ... R_(1) (2.41)
z T Sl..Sp t gl Sirl(T) * i§=:1 SiSi+1n T nn K

where Rsl__sp(T) contains the output signal and cross terms [periodic
part of RZ(T)], and Rnn(T) represents the direct feedthrough noise
components.

One is usually interested in only a few terms belonging to
one of the RZ(T) subsets. Hence it is not necessary to calculate the
complete series of Rz(r), which is usually extremely lengthy for values

of p greater than 1.

1. The terms in Ry ,(7T) are the ones that result from the interaction
i
of the signal i with the input noise.

2. The terms in R are the ones that result from the inter-

siSJn(T)
action of both the input signals i and j with the input noise.
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The very definition of these terms imposes certain obvious conditions on
the k and mi indices. These conditions, together with the need that
k + Zmi be odd, make computing the terms involved a simple process.

The subscript o will be used for output and i for input.
The output signal power is given by imposing the conditions k = 0 and

m, =0 for j # i, which give

2
(si>o th ~ 2b0,00..m,0..0 (2.42)

Specifically, for the first zone, mi =1 gives

i 2
(8), . T 2% 00..100..0
first
zone
2
8 (8] 1 p
- = - N N
=~ f v exp( 2v)Jl(v,/zsi) 1] Jo(v,/zs,)dv
n 0 J=1
J#
(2.43)
b. Signal and Crossproduct Components, Rs s (I)
17 5p

One can easily derive expressions for signal and crossproduct
componerts in both the wideband and narrowband cases. Inspection of the
expressions for Ry(T) and RZ(T) indicates that Kk must be 0. Hence,

in the wideband unfiltered casc,

“ ‘ p
- 2 N
R (1) = 2 2 b ‘ ¢ cos m.a I
y sl..s O,ml..m aLoom i
p m_ = m =0 P \i=l
1 p
A“ ~\“ ‘m -m
\> \\ 2 1 p
RN 1 —_— C [
s 2 P0m . om ) cos [(mlul mﬁ‘p)T]
1 p 2
m, = m =0
p
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when Zmi is odd. For the narrowband case this reduces to

o0 o T o
R (1) = 2 Z b2 —-—L————pcos[(mm *oootmo )]
z sl..sp O,ml..mp 2p-l 1" PP
m, = m =0
1 p

with the additional condition imposed on the indices that

For p =1 the above reduces to

[6.8] [0.¢]
yRs(T) = 2 bo,m Cp. ©OS M T = 2 2 bo’m cos mw, T
m =1 1 1 m, =1 1
1 1
m_=odd m, =odd

which is precisely the result given by Davenport and Root [Ref. 7]. For

the first zone, obviously,

2
ZRS(T) = 2b

0,1 905 Uy?
For any bandwidth, for p = 2,
(XD (6.8)
- -,
R (T)=2 \ b 'S cos m i, T COS m_ (.7
y s.s L O,m.m m, m 171 272
152 wZo n o 1M ™ M
1 2"
m1+m2 = odd
For the narrowband case (first-harmonic band), Ko s (1), the additional
172

condition imposed on the indices is
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1 2
Hence,
& &)
-~ 2
— o o + N
st 2: 21 2 O,m m, ‘m, m cos [(ml&l - mé‘z)T]
0 m 2 1 2
1 2"
mlim =*1
Im, = odd
i

Further simplification in this case is possible by noting that

cos [(mlw1 + mébz) 7] contributes only when

=
1l
Qo
=
]
[

=
1}
o
3
i
[

2
. . . - - 4
This gives (bO,lo cos alT + b0 o1 cos wzr). Also, m1 m2 *+1

implies m2 = m1 ¥ 1. This contribution to the first zone due to the

terms arising from cos [(mlw1 - mé”z)T] is, with appropriate restric-

tions,

= y bz
2 Po.m (m-1) “m -1 8 Imley - w) - a,lT)
. 1 1
m, 1
1
[N}
+ b2
- O,ml(ml+1) m cos {[_ml( 2 u“1) - LUZhJ
m, =0
1
= N 2b2 cos [Im (o, - ) - o, 11} + b2 cos w., T + b2 cos w, T
- LNRLRSY 12 7% 2 0,10 1 0,01 @2
m, ==
1
1#L0
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Hence,

st 8 (T) =B ZS bg, m m_ -1 cos {[ml(wz - wl) - wZJT}
172 — ' 1|| 1 '

1 (2.44)

This agrees with Jones' result [Ref. 8, Eq. (15), p. 36]. For higher
values of p, the computations though simple and straightforward become
lengthy. Fortunately, it is not necessary to derive the above series for
the signal-to-noise computations. Additional conditions are imposed on

the indices and these simplify matters extensively.

c. Direct Feedthrough Noise Components, Rnn(T)

These terms impose the condition that m, = 0 for every i.
Since the autocorrelation function exists only when the sum of all the

indices is odd, k must be odd, Hence,

> Kk
2 N k k
ann(T) = 25 hk,OO..O s (1) cos w,T
k=1 [
odd P
w (k-1)/2 n2
_ k,00..9 k, . k! 1 iy
= zz ES = (1) = eI [(x 21)mCT]
k=1 i=0
odd
k-1)})/2
e (k) b2 0 (1)
= 25 fim00..0 cos [(k - 2i)u 7]
(k-1)! 1! c
k=1 i=0
odd
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The expression reduces to Eq. (17) of Jones [Ref. 8] when p = 2. With
no restriction placed on the bandwidth, these terms for wideband cases

can be expressed as

2 RE(1)
R (1) = z a n2
nn k! k,00..0
k=1
odd
ok
N k 2
= Z K P (0 060
k=1
odd
Also,
“ .k
N .2 k
Snn(f) = z ol hk,oo 0 [o(f) * o(f)]
k=1
odd

C. OUTPUT FACTORS DUE TO SIGNAL AND NOISE INTERACTION

These computations are usually lengthy though straightforward. For
example, for Rg ,(7), the conditions on the indices which must be met
i

are:
1) k + Eimi = odd nonnegative integer
(i1) m, = 0, where j ¢ (1,p) and j # i

(1ii) m #0 and k #0

Hence for wideband cases,

o0 (o ¢]
n 2
Rsin(t) =2 Z z kT ",00..m 00..0 €°5 ™®;T
k=l m, =1 !
1
k+mi=odd
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For the narrow bandpass case,

X W
k
N 2 k k
yRSin(t) = 2 z 2 o hk,oo. m 00..0 o (1) cos w,T cos mow, T
k=1 =1
k+m, = odd
1
(k-2)/2, k even
o0 o (k-1)/2, k odd
N 2 K, 1
=2 22 bk,OO..miO..O () 25 (k -3)! 5!
k=1 mi=1 j=0
k+m, =odd

* cos {[(k - Zj)ac - miun]T]

Note that the cos {[(k - 2j)wc + mimi]T] terms are not permissible

owing to the condition on the indices.

For the first-harmonic band, further conditions are imposed,

k = 2j - m =21, k - 2] = (mi 1)
k - (mi + 1) k + (mi + 1)
J = > ; k-J=————F—

Also when k is even, mi = odd, which implies Kk

= mi 1 1. Applying
this and simplifying,
w " 2 K,
_ 2bk,oo..|i+1|o..0 oo ()
R (1) =
Z 8 K+ [i] k- i
1 i=-e k=[1], ]i]+2 ! !
2 2
s eos ([iug = [(1+ D))
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This result reduces to that of Jones [Ref. 8] when p = 2. Similarly,
expressions can be developed for the other factors of the autocorrelation

function of the filtered output.

D. SMOOTH LIMITERS WITH ERROR-FUNCTION TRANSFER CHARACTERISTICS

The above results are applicable to the class of smooth limiters

which have a transfer function describable by an error curve

( (x/a) 2
2 -€
g+(x) = erf (x/a) = -\—/—?]0. e d¢ for x> O
g(x) = ﬁo for x =0 (2.45)
e, (-x) for x <0

by simply replacing N in the above analysis by (N + a2), which is
seen to be valid for any value of p. The value of a controls the
smoothness of the limiter. For the case of one signal in noise, see

Galejs [Ref. 19], Blachman [Ref. 20), and Jones [Ref. 8].

E. ASYMPTOTIC RESULTS

1. Case I, Weak Signals

Since all p signals are buried deep in noise, N 1is greater

than S, for all i ¢ (1,p). From Eq. (2.3)

2 [° exp (-x2 4 5y He z Sj 12
P0,00. . (m =1)0.,0='ﬁf X n\w) AT ) x| e
1 0 j=1
J#
(2.46)
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For further evaluation, use is made of the following arguments:

1. The power series representing the Bessel functions

p+2n

2 -1 (5 e
J“(z) - Z) n! (§12+ 2)'

is absolutely convergent for all values of x, real or complex,
less than infinity.

2. Hence the power series obtained by the multiplication of a finite
number of such series is also absolutely convergent for all finite

values of x.

For detailed proof refer to Watson [Ref. 11, Sec. 5.41, pp. 147-148]. In

particular,

s, 1/2 ,1: i!1/2
Jl H X JJ J0 | x
j=1
JH
s \1/2 S, P /s,
R | et | -2 ()2 JY[x2 +
T 2|\ N 8\ N 4 N
j=1
" J#
1 IIIS| 1/2 6
=3 Ljr X (1 T CyX + CX - CeX 4 )
where 02n’ n f O are the terms involving Si/N and its higher powers.

This series is absolutely convergent. Therefore the integration and sum-

mation can be interchanged, giving
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1/2

b -21 El ” exp |- EE dx
0,00..10..0 " W2 \N A P 2

© 2 ) 2
2 X 4 X

- C X exp |- ——)Jdx + ¢ X exp|l-—}dx ...
2 0 4 4 0 4

Since each integrand exists for all n 2z O,

1/2 J

o0
1 i 2 b'e
0,00..1..0 =T \¥ \/“'czfo x exp |- o Jax ...

Furthermore, etc. involve Si/N and its higher powers, and

cz’ c4l
since N can be arbitrarily chosen large enough such that the higher

order terms can be neglected, then, for very large N such that Si/N - 0

for all i ¢ (1,p),

g 1/2

?1 (2.47)

b0,00..10..0 -

Q=

Also, under these conditions, for every i ¢ (1,p), the output signal

power in signal 1 in the first zone is
S
2 i
(8;) = = <T> (2.48)
i

Hence under strong noise conditions, input signal-to-signal ratios are

presec 'ved, i.e.,

== for j,k ¢ (1,p) (2.49)
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To compute the signal-to-noise ratio at the output, the total

output noise power in this case is given by the n x n terms. The total

noise power in z(t), defined as N, is
p
N, = Rnn(O) + z Rs.n(o) + Z R o n(o) ...+ R, (o)
e i i7i+l 1 "'p
From Eq. (2.32) and arguments similar to the ones used above,
™
p :
1 © xz [,/si/N x] higher
b = " X exp |- — II ————— |1 - order dx
k,m,..m %=1 4 m
1 p n2 o i=1 9 i m ! terms

i

= -
As N - o such that Si/N ~ 0, then by , g for any m. =1-0
as Si/N -+ 0. Hence bk 00..0 is the only term to survive. That is,

the noise at the output is contributed by n » n terms only under strong

noise conditions, in which case,

1 ¥ k-1 2\ B s,\'/*
- X 1
00.0= 31 f X ew (<) T [(2) x| ex
n2 0 i=

= % J;w exp (-t) t(k/z)-1 dt

which by definition of the gamma function becomes

it
N =

F( ) (2.50)

Pk 00..0 =

=

SEL-65-056

R R 8 F% 150,00 070 670 070 00 0% 5% PR D2 A% 0%2 0% 2% T T 00 R 0 0 A o A G R O R N T A R I S IR NIRRT LI 17 10 L e



The output noise No is given by

S
SCREDE 2
2 k k

odd

N+

Substituting k = 2j + 1,

55

(=%
o

Using the generalized factorial notation given in Ref. 13,

NG
ann(O) 2 ‘/?I_‘/-;z -—(2—;—37;1

=l

it

—82- for N - o and si/N—»o
n

(2.51)

In the above equation, E(x) denotes the complete elliptic integral of

the second kind. This result could have been predicted by observing that

the limiter output is a (—1,+1) square wave. Hence the total power in

2
the fundamental zone is (8/n"). Since §, » 0 for every

N, - (8/“2). When N -« in such a way that (Si/N)i -0,

signal-to-noise ratio is given by
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S,
=) 4L —; for any i ¢ (1,p) (2.52)
N o 4% N L

that is, a loss of 1 db approximately. Hence, when noise controls the

limiter, the following general results apply:

1. All input signal-to-signal ratios are preserved when hard bandpass
limiting occurs, i.e., signal suppression effect is absent.
2. The signal-to-noise ratio at the output for every signal is 1 db

less than the signal-to-noise ratio at the input,

Particular cases of the above have been derived previously by Davenport
for the one-signal-in-noise case [Ref. 4] and by Jones in the two-

signals-in-noise case [Ref. 8].

2. Case II, One Strong Signal

a. Signal and Crossproduct Power

In this case, one signal is very strong relative to the noise

and to each of the other signals. Let the strongest signal be Sl' This
is no restriction since the numbering of the input signals is arbitrary.

Here

p
=
(Sl)_ESiJrN

i:=

[\

It is also given that

The limiting value of the output strong signal power (S

evaluated under the above given conditions. From Eq. (2.33),

dy

2
™ - 3 S.\1/2
o f cxp ( Ny /4b1) ; i /
b = ‘ —
0

0,10..0 1

[
P
—
<
S
o~
o]
w:
e

The integrand exists for all values of positive indices on y and, by

the arguments developed previously,
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(si/sl) -0, i#1, and

2 1
bo,1o..o — J(;. y Jl(Y) dy for
(Sl/N) —> %

Since the integrand is 1, b0 10..0° 2/n  and therefore,
,10..
2 8
(Sl)o > 2 (;) - ﬂ2

which is, as expected, the total energy in the first-harmonic zone.

An alterunate way to arrive at the above is

00
2 -1 N\ 2
P0,10..0 7 % J; y ~exp |- 4sl> yo| 3,(y) gy

il
<7|H
=1
Am
=), !
\_/H
~
N
o=
o]
-
o~
N
[\
]
[¢)]
z| !
SNS—

1]
<7|H
=
z|, »
S——
=
~
[\~]
[0}
3
'c
/T\
NI w0
>
~—
—
o
A
N W
Z| -
~——
+
=
-
NN
N W
Z|=-

14
[0}
N
~
4:‘
=1
N
-
[®]
L2
—
»
Jx]
n
o
N

Noting that In(z)

which is the above result.

The limiting value of any of the weak signals at the limiter

output is
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where

0,0..(m,=1)0..0 ~

Since (Sj/sl)i - 0 and (N/Sl)i - 0, it can easily be justified by

use of the above arguments that

2 (¥ -1 5 H2
P0,0..(m.=1)0..0 " J; y I\ s y| 9(y) dy

This integral is the well-known Sonine and Schafheitlin integral. Hence,

[~

b _ 2
o,o..(mi=1)o..o T on

(s./s )1/2 r (% S,
1/1 <>F %,%;2;<1>

ar (2)r (1

o

S
%)
[

s 1/2
1 (%1
= ;-<§—> as si/s1 - 0 (2.54)

2 Si
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Hence, the output weak-signal to strong-signal power ratio is

-] 8
k 1 1
(5—1) “a\E for (s;/N); - and (5,/8); ~0  (2.56)

Therefore, if the strong signal controls the limiter, then all the other
signals are modified such that the output weak-signal to strong-signal
power ratio is one-fourth of the input power ratio. In the case of two
signals without noise, a similar result is given [Ref. 8].

It is easy to evaluate any interfering component under the
above conditions. It would be convenient to adopt the notation
sOO..miO..m-O..O to mean the crossproduct component at a frequency
(miwi - mw,). An example would be the evaluation of the intermodulation

JJ
component which occurs at a frequency of (Zwl - wi). It is best to

start with the expression for yRsl..s (t) in such cases. Therefore,
for (sl/N)i - o and (si/sl)i >0 for i« (2,p), the ratio of the
output power of the strongest intermodulation component to the output

power of the weak signal is

]
200.,100. .0

S,
i

-1 (2.57)

When p signals are present at the input of the limiter,
such that the strongest signal S1 controls the limiter and all the
others are weak signals, the output power of the (Zu)1 - wi) intermodu-

lation component approaches that of the power of the weaker signals

[Ref. 8].
b. Noise Power

To determine which of the terms in the output power contribute

to the noise, the following analysis is adopted:
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Using Eq. (2.33), it can easily be shown that

m /2 m,
k/2 d p i i
b _1 1 [N f“‘ Jebp (s,/8,) y
k,m ..m ~— n _k-11\8 i n
1p 2 1 0 =2 o 1 o
i
higher
* |1 - order J (y) dy
m
terms 1
Since 8./, -0 if m #£0, i#1,
bk,ml..mp ~0 if any m #0, i (2,p) (2.58)

The above equation implies that the terms which contribute to the output

noise power are n . n terms and s1 x n terms and therefore

(s}
1 [n k-1
P ,m 00..0 ~ ko1 \S, f yo 3, (y) dy

1 n2 1

Since (Sl/N)i - o and (si/sl)i - 0, the terms involving the lowest
power in k, 1i.e., k =1 are retained. The first-order component

belonging to the n - n subset is

2
2b /2

1,00..0 |1 (N f I (y) dy
' A\l
170 n\8, o O

2 (N

== |+ (2.59)
’ﬂ2 <Sl

The rest of the terms in the n . n subset containing higher powers of
(N/Sl)i are neglected. Also, irrespective of the value of m , which

must be even for bl,m100..0 to exist,
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1[N J’ 1 (N
b ~s\s I (y) dy = {5
l,m100..0 1 S1 0 m1 1 S1
Furthermore,
w (¢ ) k
N 2 k
yRsln(O) = 2 zi 25 K hk m100 o o8 w, T cos mlmlT
k=1 1= T=0
N 2
stln(O) =2 (5 h1,200..0) 2 cos wcT cos ZplT
k=1y T=O
m1= filtered
2
- 2b1,200..0
2 N
=3 \s” (2.60)
I 1

Hence for (Sl/N).1 - o and (S, /S -0, i¢ (2,p), the total noise

output power is

~) " 2{%) (2.61)

The 3-db increase in the output SNR, which occurs due to hard

bandpass limiting, applies only to the strongest signal, which controls
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the limiter. This result for the case of one signal was given by
Davenport [Ref. 4], and this analysis also checks with Lhe one by Jones
[Ref. 8].

For weak signals S,y i #1,
T B (2.62)

Each of the remaining (p—l) weak signals suffers an SNR

loss of 3 db when the limiter is controlled by the strong signal.

3. Case III, p Signals of Equal Strength

a. Signal Power

From Eq. (2.43) it is seen that the output signal power

depends solely on b, The condition that all the signals are of

m

1°°7p

equal strength gives

2t _ N2 p-1
bo,oo..(mizl)o..o*ufo y ~exp 15 V) ) 35 (v) gy

1
(2.63)

As a result of the symmetry of the integrand, it can be concluded that

all signal output powers are equal;
8 (" N2 p-1
(s.), == J(; y ~exp |- = v )3, (y) Iy T(y) dy

For the noiseless case and p =1 or 2, closed-form solutions
exist [Refs. 7,8]. For all other cases, solutions can be developed in
the form of an infinite series involving generalized hypergeometric func-
tions,

For large p, the following procedure culminates in a useful

approximation.
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o
. -1 N 2 -1
Define I(p) =f y = exp <— N >J1(Y) Jg (y) dy
0

Comparing the series

with

,_\
wl<
S
It
=]
1
[ )
iy ]
=
+

2
- (X
Jo(y) ~ exp (2)
y 1 /y\2
30) =% e [- 5 (%)
Hence,
1, N
w0 P -3 5.\ ,2
I(p)z«f 5 €xp |- 5 _y_2_ dy
0
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By a suitable change of variable,

- 1/2 . - IE
I(p) ~ | ——— f exp |= == | dz
p o= é i 51 Vv 21 YO 3
" 1

Since the integration has been carried out to infinity, it is preferable
to replace [p - 1/2 + (N/Sl)] in the denominator by [p + (N/Sl)],

giving

The normalized output signal power is by definition

(s,)
lo N . ..
——— =- |1.05 + 10 1log p + — in decibels (2.65)
2 10 S
(8/n%) 1

This equation implies that the output signal power in decibels decreases
linearly with the number of signals. Also, if the noise power is equal
to the signal power, then the output signal power for p signals with
noise is approximately the same as for (p+l) signals without noise.

To verify the above results and also to justify the validity
of the approximation, the exact output signal power was computed by
numerical integration on a Philco 2000 computer and compared with the
results obtained from the above approximate formula. The above formula
gives results which are within 0.1 db of the exact value for P greater
than or equal to 4. The results are tabulated for values of P as high

as 100 (see Table 3, p. 61).
b, Crossproduct Power

The output power of, say, S0 m.0..m o+ Which has an
.m0, .

i
interference frequency of miwi - mjwj , 1s given by
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S0..miO..mJ..0 = ZRSISZ"S (0)
P appropriate

term

0O 2
_ 2 -1 p-2
=2 RJ y 9, ) g (v) 3g T (y) dy
0 i J
= S0..m.0..m...0 (2.66)
J i
which by definition has an interfering frequency of mjwi - miwj . Also
note that
T o 1 PO Bl T e B 1 T
j i
= e +<D.+ <m - l) (w, = w,)
2 i~ 2] Y%y
and
mw, - mo| = |mw, - - ma.
Ji i“jim =m, -1 i’i i i
J i
W, + w,
I D SRR -1 -
2 (“‘1 2) (w; ‘“j)

It can be concluded, therefore, that the output crossproduct terms situated
on either side of the arithmetic mean frequency have the same power.
Similarly, it can be shown that the enitre output spectrum in the first
zone is symmetrical about the arithmetic mean frequency.

Other results can also be derived when the inputs have equal

powers, e.g.,
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Output power at miwi - m.w.,

JJ

Therefore, if some of the signals are of equal strength, the number of

(power at ]m,w, -ma |
i1 Tjq
power at |m.u. - m.uy]
_ ji i’
power at |m.u. - ma |
J 1 1q
etc.
\

components to be computed decreases very rapidly.

For the case p = 2,

comprising the signal outputs in the first zone,

it is easy to compute the entire series

21)
N 9 gip = V)n
dx 2
fJ(ax)J(ax > = 2 5
0 ﬂ(p -V )
R(p + v) > 0, a>0
gives
! 2
8 o Jq(y) Jq_l(y)
Smom, | =73 22[ v
1"2/0  n 0 y
q=1
r o0 00
_8 |, 4 64 EE 1
T2 2 2| 4 2
n = n°(2q - 1) N (29 - 1)
e a1
Al T2 2
_8
=72
n
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which is, as it should be, the total energy in the first zone. This

special result, which states that the power contained in the intermodula-

tion components falls off as the reciprocals of the squares of odd inte-

gers, was given by Jones [Ref. 8]. The output power in the crossproduct

S11..100..0 1S &iven by

q p-q
times times

-
S -
S _ lqop q
19oP"4 8
norm 2
L

~

—

&3]
-1 - N 2
= f y o ai(y) 95 y) exp (- o= v7 ) day|  (2.68)
0 1

The integrand is best evaluated by direct integration on a computer. To

find an approximation to the above integral for large values of p, the

following procedure was adopted Equations (2.64) give
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=
]
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1
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=]

]
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N
"

V]

1 fm 2q—2 Z(q—2)/2 2 dz -z_lfm Z(q/2)—1 e ” dz
0 0

51

q N a/2
P-35+ 35
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Since the integration has been carried out to infinity, it is again pre-
ferable to replace (p - q/2 + N/Sl) in the denominator by (p - q/2 +
1/2 + N/S;) to give

1
I(p) =
' p_g+l+iq/2
2 2 S1
which gives
q 2
r(E) 1
- ~ 2 (2.69a)
1%0P™4 norm . 1 + o :
P=2%2"%s
1
2
= 2 4,1 XN
= 10 log, ] 10q log, o (P -5+ 35+ 3 (2.69b)
P-z- 1
in decibels
Equation (2.69) gives the following results in decibels:
For q = 1:
(s ) ~=-11.05 + 10 log p + X (2.70a)T
100..0°0 ’ 10 S
norm L 1

For q = 3:

-

7.07 + 30 1og10 <p -1+

-

14
I

> (2.70b)
> (2.70c¢)

|

o
norm

-

(8111110..0 o ~ - |3.55 + 50 log, <p -2+

2=

norm

*This result agrees with Eq. (2.65).
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For q = 7:

N
S ~ - |70 log p-3+—}-4.41 (2.70d)
o7/, 10 S,
norm
For q = 9:
S 4 p-9 ~ - |90 log, (P - 4 + éli - 15.29 (2.70e)
10 o " 1
norm

All the above expressions give results which are very close to those
obtained by numerical integration on the Philco computer for large values

of p. Some of the results are given in Tables 5, 6, and 7, pages 63-65.

The output power in the crossproduct S is given b
P p P r.q.p-q-r glv y
2°1°0
2
[ N2} gmy) S(y) 2T (y)
5 e = y dy exp \- s~ v } I,\y) I (y) J y
2rlqop q-r 0 4S1 2 1 0
norm
A 2
= [1,(p)] (2.71)

Proceeding on similar lines and approximating the Bessel functions in the
region of interest as indicated by Eqs. (2.64) results in

%4 N
3 )

1(p)~jmf_ﬂ-_}_dyexp _ s1 yz
2 0 23r+q 4

kel
}
oo

By a suitable change of variable and simplification,

2r + q)

I = I
z(p) e <p I N>(2r+q)/2 ( 2

3 2 S
2 1
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Hence,

I\<2r + q) 2
2
S r -q-r = r+l - 2r+ (2.72a)
21007 e |2 cgozr 1 NN
P-9~3'"2"%5s
1
r+l1 2
= - 1°1°glo;(27a_—)
2
_9_2r 1 N
+ 10(2r + q) log,y (P - 5 3t 3t 5 (2.72p)
in decibels
If r =0, then Eq. (2.72b) reduces to Eq. (2.69).
If r=1, q =1, then
S = - 113.09 + 30 lo -2 + N in decibels (2.73)
1.1 p-2 = : E1o\P "3 '35 :
210 1
norm

If r =1, q =3, then

=-19.57 + 50 log p - 5, N in decibels (2.74)
10 3° 8

norm -

If r =1, q =5, then

> in decibels (2.75)

8 N
= - 6 7 -2, =
1.61 + 70 log10 <p 3t Sl
L

If r =2, q=1, then

4 N

-3 XY in deci 2.76
wiP-3+3 in decibels ( )

s = - |15.59 + 50 log
921 1oP3
norm

The above expressions give values which are close to those obtained by
integrating numerically on the computer. Some of the results are shown

in Tables 5 and 7 on pages 63 and 65.
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It may be added that such techniques can be used to get
approximate expressions for the case when the signal strengths are not

equal.

F. COMPUTED RESULTS

For p o 2, Jones used the technique of expanding the integrand in
a series involving hypergeometric functions, integrating, and using the
resulting series for computational purposes [Ref. 8]. This procedure
was found to be unsuitable for values of p > 2. All computations were
performed on the Philco 2000 computer by carrying out the appropriate
integrations numerically. The numerical integration technique was also
used by Shaft [Ref. 9]. Some of the results presented here follow the
same format as those in Ref. 9.

The following results are presented in tabular and graphical form:T

1. Figures 3a and 3b show the output power in the various signal

components for various (Sl/SS)i and (Sl/N)i when p =3 and

when
a. One input signal is varied such that S8, = (82 = SB)
b. Two input signals are varied such that (S1 = Sz) < 8.

2. Figures 4a-4c show the effect on the output power in the various
signal components when p = 4 and when
a. One input signal is varied keeping the other (p - 1) = 3
signals equal and fixed.

b. Two input signals, S and S are varied, keeping 53 and

1 2’
S, constant in such a way that (S1 = Sz) E (S3 = S4).
c. Three input signals are varied in such a manner that
(s1 =8, = s3) "8,

3. Figures 5a-5c show the power in the output signal components for
the case of p = 5, under the conditions specified therein.

4. Tables 1 and 2 give the signal-suppression effect in the case of
p=3 and p = 4.

5. Figures 6a-6b and 7a-7c show the signal-suppression effect graphi-

cally.

TFigures 3-9 and Tables 1-7 appear at the end of this chapter beginning

on p. 54.
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6. Table 3 gives the output signal power in the case of p equal
signals (no noise) for values of 1 ' p - 100. Both computed and
approximate values using Eq. (2.65) are given.

7. Table 4 gives the output signal power in the case of p equal
signals in noise for 3 .. p: 100.

8. Table 5 gives the strength of some of the crossproducts for various
input signal-to-noise ratios in the case of four equal signals.

9. Table 6 gives the crossproducts for p equal signals in noise for
large p.

10. Table 7 gives other crossproducts for the case of p equal signals
(no noise).

11. Figures 8 and 9 display the output power in the crossproducts for
large p in the equal-signal case and clearly show that the values
obtained by the approximate formulas are indiscernible from the
exact values obtained through computer evaluation of the exact

expressions.

G. CONCLUSIONS TO CHAPTER 11

It has been shown that many of the limiting properties for the case
of hard limiting of p inputs in random noise are the same as those for
the case of p = 2 under similar conditions. The following conclusions
are in order:

1. The limits on signal-to-noise ratio are:

For one signal in noise,

For p signals in noise,

(S/N)
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2. For the strong-noise case, the following results which are known
for p =1, 2 [Ref. 8], have been shown to be applicable for

any p:

a. The output signal-to-signal power ratios are the same as the
input signal-to-signal power ratios for any number of inputs,
that is, there is an absence of signal suppression.

b. For any p the signal-to-noise ratio at the output is 1 db
less than the signal-to-noise ratio at the input.

3. For one strong signal S1 and (p—l) weak signals Si:
a. If the input (Sl/si) power ratio is very large, the behavior

approaches that of the one-signal-in-noise case as the ratio

of the input strong signal to the weak signal increases, and

Then, for large input signal-to-noise ratios:

(1) The range of the normalized SNR's approaches the one-
signal-in-noise case.

(2) The suppression effect manifests itself, with the amount

approaching the limiting value,

(sl/si)0 - 4(31/31)1' that is, 6 db.

(3) The strong signal receives an improvement in relative
SNR, which approaches a value of 2, that is, 3 db.

(4) Each of the (p-1) signals suffers a loss in SNR by a
factor of 2, that is, 3 db.

b. 1f the ratio (Sl/si)i is larger than approximately 20/1 and
for (SI/N)i greater than 1, the effects of limiting are the
same as the equivalent two-signals-in-noise case.

c. If the ratio (Sl/Si)i is greater than or equal to 20/1, and
that for (Sl/N)i is less than 1, then for p > 2, the sup-
pression effect becomes less pronounced and ultimately the weak

signals are boosted instead of being suppressed.
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4, For two strong signals, say S and S and (p-z) weak signals

)
Si’ the behavior follows the ;atterns zet by the two-signals-in-
noise case. There is one exception, however, which is the boosting
of the weak signals for (sz/si)i > 20/1 and (SZ/N)i < 1. These
are the very same conditions as for item 3d. The strong signals
cause a beat pattern and every time the envelope of the two strong
signals falls below the noise or weak signal, the latter gets con-
trol of the limiter. Consequently, all the weak signals get trans-
mitted without any attenuation. The effect is similar to the one
described by Jones [Ref. 8], which is an attempt to give some
physical explanation as to the decrease in the relative signal-to-
noise ratios for high input signal-to-noise ratios.

5. In all cases the crossproducts follow the curves in Fig. 4 of Jones
[Ref. 8] very closely. The signal power in the crossproducts
remains nearly constant for input SNR's greater than 6 and decreases
very rapidly for smaller input SNR's.

6. From the numerical results and graphs presented, it is concluded
that the power in the output components remains relatively inde-
pendent of the input SNR's for input strong-signal-to-noise ratios
greater than 10 db.

7. For large p, and approximately equal signals, Eqs. (2.70) through
(2.76) are valid.

8. For p large, the following results were obtained:

a. The power in any signal or crossproduct term decreases in a
linear fashion when plotted on a log-log basis [see Eqs. (2.70) -
(2.76)].

b. The sum of the powers in all the p signals at the output is

independent of p. From Eq. (2.70),
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